Knowledge Entropy and Feature Selection in Incomplete Decision Systems
نویسندگان
چکیده
In this paper, concepts of knowledge entropy and knowledge entropy-based uncertainty measures are given in incomplete information systems and decision systems, and some important properties of them are investigated. From these properties, it can be shown that these measures provide important approaches to measure the uncertainty ability of different knowledge in incomplete decision systems. Then the relationships among these knowledge entropies proposed are discussed as well. A new definition of reduct is proposed and a heuristic algorithm with low computational complexity is constructed to improve computational efficiency of feature selection in incomplete decision systems. Experimental results demonstrate that our algorithm can provide an efficient solution to find a minimal subset of the features from incomplete data sets.
منابع مشابه
Anomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors
Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...
متن کاملApproaches to Knowledge Reduction of Decision Systems based on Conditional Rough Entropy
Knowledge reduction in rough set theory is an important feature selection method. Since it is an NP-hard problem, it is necessary to investigate fast and effective approximate algorithms. In this paper, to address this issue, by introducing rough entropy in information systems, the novel measures of conditional rough entropy with distinguishing consistent objects form inconsistent objects are p...
متن کاملInformation Entropy and Information Granulation-based Uncertainty Measures in Incomplete Information Systems
In this paper, concepts of information entropy and information granulation-based uncertainty measures are introduced in incomplete information/decision systems, and based on maximal consistent block technique, some variants of information entropy and information granulation are presented to measure the discernibility ability of an incomplete information system. Then, some important properties o...
متن کاملSHAPLEY FUNCTION BASED INTERVAL-VALUED INTUITIONISTIC FUZZY VIKOR TECHNIQUE FOR CORRELATIVE MULTI-CRITERIA DECISION MAKING PROBLEMS
Interval-valued intuitionistic fuzzy set (IVIFS) has developed to cope with the uncertainty of imprecise human thinking. In the present communication, new entropy and similarity measures for IVIFSs based on exponential function are presented and compared with the existing measures. Numerical results reveal that the proposed information measures attain the higher association with the existing me...
متن کاملSustainable Energy Planning By A Group Decision Model With Entropy Weighting Method Under Interval-Valued Fuzzy Sets And Possibilistic Statistical Concepts
In this paper, a new interval-valued fuzzy multi-criteria group decision-making model is proposed to evaluate each of the energy plans with sustainable development criteria for proper energy plan selection. The purpose of this study is divided into two parts: first, it is aimed at determining the weights of evaluation criteria for sustainable energy planning and second at rating sustainable ene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013